# **Physics Equations**

# **Physics I**

### Speed:



### **Velocity:**

$$\mathbf{v} = \frac{\Delta \mathbf{x}}{\mathbf{t}} \quad \begin{array}{l} \mathbf{v} = \text{velocity} \\ \mathbf{x} = \text{position} \\ \mathbf{t} = \text{time} \end{array}$$

### **Acceleration:**

$$a=rac{v-v_0}{t}=rac{\Delta v}{\Delta t}$$
  $a$  is average acceleration,  $\Delta v$  is change in velocity, and  $\Delta t$  is change in time

# **Physics II**

### Force:



acceleration due to gravity is  $9.8 \text{ m/s}^2 \text{ so}$  weight is a measurement of the force of gravity on the mass of an object

#### Momentum:



$$p = mv$$

# Impulse:

Change in momentum:  $\Delta p = mv_f - mv_i$ 

Force applied over time to object:

$$F\Delta t = m\Delta v$$

$$\Delta p = F\Delta t$$

### **Physics III**

#### Work:



#### work = Force x distance

### **Power:**

Power = <u>Fxd</u> time



## Kinetic energy:



 $E_k$  = kinetic energy of object m = mass of object v = speed of object

# Potential energy:



E<sub>p</sub> = potential energy

m = mass in kg

g = gravity (9.8 m/s<sup>2</sup>)

h = height in meters

# Mechanical energy:

$$E_T = PE_{\rm g} + K\!E$$

$$E_T = mgh + \frac{1}{2}mv^2$$

# **Physics IV**

### **Heat energy:**

 $Q = mc\Delta t$ 

Q = heat energy in JOULES (J)

m = mass of the sample in GRAMS (g)

C = specific heat in J/g°C

 $\Delta t$  = change in temperature (°C)

#### Wave speed:



V = speed of wave (m/s)

f = frequency of wave (Hz)

 $\lambda = wavelength (m)$